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Abstract

In this paper, we present the Symmetry Descriptors of a 3D model. This is a collection of spherical functions that
describes the measure of a model’s rotational and reflective symmetry with respect to every axis passing through
the center of mass. We show that Symmetry Descriptors can be computed efficiently using fast signal processing
techniques, and demonstrate the empirical value of Symmetry Descriptors by showing that they improve matching
performance in a variety of shape retrieval experiments.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction

Symmetry has long been recognized as playing an inte-
gral role in human recognition [Att55, Vet92]. It is char-
acteristic of repeating patterns within a model, and can be
used to guide reconstruction, compression, and classifica-
tion. This awareness has motivated the development of a
wide range of techniques for identifying the symmetries
of a 2D image [Ata85, Wol85, Hig86, Sun95, Mar89]. How-
ever, the increased complexity of the rotation group in three-
dimensions has resulted in little research on symmetry de-
tection in 3D. Methods for measuring individual symme-
tries have been proposed [Zab94, Zab95], and a general ap-
proach for characterizing the measure of all reflective sym-
metries has been described [Kaz02, Kaz04], but no analo-
gous method for describing all rotational symmetries exists.

In this paper, we present the Symmetry Descriptors of a
model. This is a generalization of the Reflective Symme-
try Descriptor presented in [Kaz02, Kaz04]. It represents a
3D model as a collection of spherical functions that give
the measure of a model’s reflective and rotational symme-
try, with respect to every axis passing through the center of
mass. Thus, it can be used not only to identify axes of per-
fect symmetry, but also to measure the quality of symmetry
with respect to any axis. Specifically, the measure of k-fold
symmetry of a model around some axis is defined to be the

magnitude of the projection of the model onto the space of
models having that symmetry.

Figure 1 shows a visualization of the Symmetry Descrip-
tors of two models. The descriptors are represented by scal-
ing points on the unit sphere in proportion to the measure
of symmetry, so that points corresponding to axes of near
symmetry are pushed out from the origin and points corre-
sponding to axes of near anti-symmetry are pulled in to the
origin. Thus, for the 2-fold (respectively k-fold) symmetry
descriptors, peaks in the descriptors correspond to axes of
near perfect 2-fold (respectively k-fold) rotational symme-
try. Similarly, for the reflective symmetry descriptors, peaks
correspond to unit vectors perpendicular to planes of near
perfect reflective symmetry.

The contribution of our work is three-fold. First, we define
a continuous measure for the reflective and rotational sym-
metry of a 3D model. Second, we provide an efficient algo-
rithm for computing the measure for all symmetries about a
model’s center of mass. Third, we present experimental re-
sults evaluating the empirical value of the symmetry descrip-
tors in shape retrieval applications. In these experiments, we
find that symmetry can be used to augment existing methods
for matching 3D shapes, providing enhanced discrimination
and matching performance without sacrificing efficiency.
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Figure 1: A visualization of the symmetry descriptors for a stool
and an iris. The visualization is obtained by scaling unit vectors
on the sphere in proportion to the measure of rotational symmetry
about the axis through the center of mass, in the direction of the vec-
tor, and the measure of reflective symmetry about the plane through
the center of mass, normal to the vector.

The rest of this paper is structured as follows. Section 2
reviews related work in the area of symmetry detection. Sec-
tion 3 provides a theoretical overview of symmetry, and de-
fines the Symmetry Descriptors. Section 4 describes an effi-
cient method for computing the Symmetry Descriptors of
spherical and voxel representations of a 3D model, while
Section 5 summarizes some properties of the descriptors. In
Section 6, we describe how symmetry information can be
incorporated into existing rotation invariant representations,
and in Section 7, we evaluate the contribution of symmetry
augmentation in experiments comparing the retrieval perfor-
mance of the original representation with the retrieval per-
formance of the augmented representation. Finally, we con-
clude in Section 8 by summarizing our work.

2. Related Work

Early approaches to symmetry detection focused
on detecting the symmetries of planar point
sets [Ata85, Wol85, Hig86]. These methods reduced
the symmetry detection problem to a detection of symmetry
in circular strings, and used efficient substring algorithms
(e.g., [Knu77]) to detect the symmetries by searching for
the appearance of a string within its concatenation with
itself. While these methods had the theoretical advantage
of efficiently evaluating all possible symmetries, they were
impractical in empirical settings since they were algorithms
that could only identify the perfect symmetries of a model.
Thus if a symmetric model had even a small amount of
noise, these methods would fail to identify its symmetries.

In order to address this issue, Zabrodsky et
al. [Zab94, Zab95] defined a continuous measure of
symmetry which transformed the binary question: “Does a
model have a given symmetry?” to the continuous question:
“How much of a given symmetry does a model have?” The
measure of symmetry was defined as the minimum amount

of work needed to transform a model into a symmetric
model, measured as the sum of the squares of the distances
that points would need to be moved. This approach made
it possible to evaluate symmetries in the presence of noise,
but suffered from the fact that it depended on the establish-
ment of point correspondences. While this issue could be
addressed in the case of 2D curves with uniform sampling,
it made it difficult to generalize the method to 3D where
uniformly sampling surfaces is often impossible.

The difficulty of establishing point correspondences for
matching surfaces in 3D has motivated the development of
shape descriptors which represent a 3D model by a func-
tion defined on a canonical domain, independent of the ini-
tial model’s shape or topology. (For a general review of such
methods see [Pop94, Tan04].) For these descriptors, match-
ing two models could now be performed without explicitly
establishing correspondences, by comparing the values of
the corresponding shape descriptors at each point.

The advantage of the canonical parameterization of shape
descriptors was leveraged in a number of symmetry detec-
tion algorithms [Oma96, Sun97]. These methods used the
fact that the covariance ellipsoid of a 3D model rotates with
the model, so that a model could only have symmetries
where its covariance ellipsoid had them. Since the only axes
of symmetry of an ellipsoid have to align with its princi-
pal axes, this provided an efficient way to identify candi-
date axes of symmetry. The actual quality of an axis as an
axis of symmetry would then be measured by comparing the
shape descriptor of the model with the shape descriptors of
the rotations and reflections of the model about the candidate
axis. This method had the advantage of providing a contin-
uous measure of symmetry for candidate axes of symme-
try without necessitating the establishment of point corre-
spondences. Furthermore, the method was a general one that
could be applied to wide class of shape descriptors. How-
ever, the method’s dependence on PCA for the identification
of candidate axes could only guarantee the correct identifi-
cation of symmetry axes for models with perfect symmetry.

Motivated by the ease of evaluating symmetry using shape
descriptors, and the efficiency of exhaustive search provided
by early substring matching approaches, efficient meth-
ods for evaluating the symmetries of a 2D model, at ev-
ery symmetry, were developed. The key idea of these ap-
proaches was the generalization of discrete substring match-
ing to continuous correlation with the Fast Fourier Trans-
form. These methods [Sun95, Mar89] compute the symme-
tries of a model by using correlation to compare the shape
descriptor of a 2D model with all of its rotations and reflec-
tions. This approach was a general one that could be applied
to any shape descriptor that represented a model with a func-
tion defined either on a circle, or in 2D.

The dependence of these methods on the FFT made them
hard to generalize to shape descriptors that represented a
3D model with either a spherical function or a function in
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3D. In [Kaz02, Kaz04] a method is described for computing
the measure of reflective symmetries for all planes passing
through the origin. For a spherical descriptor of size O(N2)
(respectively 3D function of size O(N3)) the method com-
putes the measures of reflective symmetry in O(N3 logN)
(respectively O(N4 logN)) time. The efficiency of this ap-
proach relies on the use of the FFT to compute correlation
with respect to a single axis efficiently and a generalization
of this approach to general symmetry detection would result
in algorithms that have complexity O(N4 logN) for spherical
functions and O(N5 logN) for 3D functions.

In this work, we show how the analogs of the FFT and in-
verse FFT on the sphere, namely the Fast Harmonic Trans-
form and the Fast Inverse Wigner-D Transform, can be used
to compute the measure of all symmetries efficiently. In par-
ticular, we describe a method for computing the measure
of all reflective and rotational symmetries of both spheri-
cal functions and 3D functions in O(N4) time, providing a
method for computing all symmetries of a model about its
center of mass, in less time than previous methods required
to compute only the reflective symmetries.

3. Measuring Symmetry

The first issue we must address is to define a measure of
symmetry for a 3D model with respect to an axis of k-fold
rotation or a plane of reflection. To this end, we describe a
method for computing the symmetries of any shape descrip-
tor that represents a 3D model as a function defined either
on the sphere or in 3D. We begin by describing a general
approach for measuring symmetry, and then present the im-
plications for measuring the symmetries of a 3D model.

3.1. Symmetry Detection

Definition: Given a vector space V and a group G that acts
on V , we say that v ∈ V is symmetric with respect to G if
γ(v) = v for all γ ∈ G.

Definition: We define the symmetry distance of a vector v
with respect to a group G as the L2-distance to the nearest
vector that is symmetric with respect to G:

sdG(v) = min
w|G(w)=w

‖v−w‖.

Using the fact that the vectors that are invariant to G de-
fine a subspace of V , it follows that the nearest G-invariant
vector w is the projection of v onto the subspace of invariant
vectors. That is, if we define πG to be the projection onto the
subspace invariant under the action of G and we define π⊥

G
to be the projection onto the orthogonal subspace then:

sdG(v) = ‖v−πG(v)‖ = ‖π⊥
G (v)‖

so that the symmetry distance of v with respect to G is the
length of the projection of v onto a subspace indexed by G.

In general, computing the projection of v onto the sub-
space of vectors invariant under the action of G is a difficult
task. However, in our case we can use the fact that the ele-
ments of G are orthogonal transformations. In particular, we
can apply a theorem from representation theory [Ser77] stat-
ing that a projection of a vector onto the subspace invariant
under the action of an orthogonal group is the average of the
vector over the different elements in the group. Thus, in the
case of a vector v and a group G, we get:

sd2
G(v) =

∥

∥

∥

∥

∥

v− 1
|G| ∑

γ∈G
γ(v)

∥

∥

∥

∥

∥

2

= ‖v‖2 − 1
|G| ∑

γ∈G
〈v,γ(v)〉

giving an expression for the symmetry distance in terms of
the length of v and the dot-products of v with its image under
the action of G.

3.2. Symmetry Descriptors in 3D

In order to evaluate the measure of symmetry of a 3D
model, it is necessary to compare a model with its reflec-
tions/rotations. A variety of shape descriptors can be used to
compare the model with its transformation, and in this paper
we focus on those that represent a model by a spherical, or
3D, function that rotates with the model.

Notation: For any integer k and any unit vector p we let
Gk

p denote the k-fold rotational symmetry group with respect
to p. If k is positive, then Gk

p is the group generated by the

transformation r2π/k
p which is the rotation about the axis p by

the angle 2π/k. If k is negative, then Gk
p is the group gener-

ated by the transformation r2π/k
p ·A, where A is the antipodal

map, sending a point q to the point −q.

For example, G3
(1,0,0) is the group generated by rotating

by 120◦ about the x-axis, consisting of 3 elements, while
G−2

(0,1,0)
is the group generated by reflecting through the xz-

plane, consisting of two elements.

Definition: Given a shape descriptor f , we define its k-fold
symmetry descriptor as the function on the sphere whose
value at a point p describes the amount of f that is sym-
metric with respect to Gk

p and the amount of f that is anti-
symmetric:

SDk( f , p) =
(

‖πGk
p
( f )‖,‖π⊥

Gk
p
( f )‖

)

where πGk
p

is the projection onto the space of functions that

are k-fold symmetric about the axis p, and π⊥
Gk

p
is the pro-

jection onto the orthogonal complement. (Note that since
‖ f‖2 = ‖πGk

p
( f )‖2 + ‖π⊥

Gk
p
( f )‖2 it suffices to compute one

of ‖πGk
p
( f )‖ and ‖π⊥

Gk
p
( f )‖. Despite the redundancy, we

store both values, as they can be used for bounding shape
similarity.)
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4. Computing the Symmetry Descriptors

We will now show how to compute all the k-fold symme-
try descriptors of a shape descriptor efficiently. We begin by
describing the method for shape descriptors that represent
a model with a spherical function. Then, we generalize the
method to shape descriptors that represent a model with a
function defined in 3D. For both cases, the key idea is that in
computing the symmetry descriptors of a shape descriptor f ,
it is necessary to compare f with its rotations. This amounts
to computing the autocorrelation of f across the group of ro-
tations, 〈 f ,γ( f )〉, and, while a brute force algorithm would
be prohibitively slow, we show how spherical signal process-
ing can be used to compute the autocorrelation efficiently.

4.1. Efficient Spherical Autocorrelation

We begin by describing an efficient method for computing
the autocorrelation of a spherical function f across the space
of rotations. We express f in terms of its spherical harmonic
decomposition:

f =
b

∑
l=0

∑
|m|≤l

al,mY m
l

where b is the band width of the function f . This decompo-
sition has the property that for any rotation γ we have:

〈Y m
l ,γ(Y m′

l′ )〉 = 0 ∀l 6= l′.

This allows us to compute the autocorrelation of f by cross
multiplying spherical harmonic coefficients within each fre-
quency l, ignoring cross-frequency terms:

〈 f ,γ( f )〉 =
b

∑
l=0

∑
|m|,|m′|≤l

al,mal,m′〈Y m
l ,γ(Y m′

l )〉.

This gives an expression of the function 〈 f ,γ( f )〉 as a
linear sum of the functions 〈Y m

l ,γ(Y m′

l )〉. Since these are
precisely the Wigner-D functions, a fast inverse Wigner-D
transform [Kos03, Sof03] gives the autocorrelation of f over
the space of rotations.

Since the spherical harmonic decomposition can be com-
puted in < O(b3) time, the cross multiplication of harmonic
coefficients takes O(b3) time, and since the inverse Wigner-
D transform can be done in ≤ O(b4) time, we compute the
autocorrelation of f across all rotations in time ≤ O(b4).

4.2. Efficient 3D Autocorrelation

In order to compute the symmetry descriptors of a 3D func-
tion, we decompose the 3D function as a collection of spher-
ical functions at different radii and use the method described
above to compute the symmetry descriptors of the collection
of spherical functions. In particular, given a function f de-
fined for all points |x| ≤ 1, we set fr to be the restriction of
the function f to the sphere with radius r:

fr(p) = f (rp)
√

4πr2

where p is a unit vector and
√

4πr2 is the change of variable
term accounting for the area of the sphere with radius r.

Discretely sampling the different radii, we can express f
as a collection of spherical functions { f1, . . . , fN}, with N =
O(b) where b is the sampling rate. Expressing each of these
in terms of its spherical harmonic representation, we get:

fi =
b

∑
l=0

∑
|m|≤l

al,m[i]Y m
l

and for any rotation γ we have

〈 f ,γ( f )〉 =
b

∑
l=0

∑
|m|,|n|≤l

(

N

∑
i=1

al,m[i]al,n[i]

)

〈Y m
l ,γ(Y n

l )〉.

Computing the autocorrelation of f with all of its rotations
requires: < O(Nb3) = O(b4) time to compute the necessary
spherical harmonics, O(Nb3) = O(b4) time to compute the
cross multiplication of harmonic coefficients, and ≤ O(b4)
time to perform the inverse Winger-D transform. Thus, the
total complexity of computing the autocorrelation is O(b4).

Note that increasing the dimensionality of the shape repre-
sentation from a 2D spherical function to a 3D function does
not increase the complexity of computing the symmetry de-
scriptors since the inverse Winger-D transform remains the
limiting step.

4.3. Computing the Descriptors

In order to compute the symmetry descriptors of a function
f , it suffices to compute the lengths of the projections:

∥

∥

∥
πGk

p
( f )
∥

∥

∥

2
=

1
|Gk

p| ∑
γ∈Gk

p

〈 f ,γ( f )〉

for all k and all points p on the unit sphere. When k is posi-
tive, the elements in Gk

p are all rotations. Thus, having com-
puted the values the autocorrelation, we can reconstruct the
symmetry descriptors SDk( f , p). However, when k is nega-
tive, some elements of Gk

p will be of the form γ = rα
p ·A –

products of a rotation and the antipodal map. In this case,
we cannot use the computed autocorrelation values directly.

In order to be able to compute the symmetry descriptors
SDk( f , p) for negative k, we observe that the antipodal map
acts on a function f as follows:

1. If f is an even function, the antipodal map leaves f un-
changed

2. If f is an odd function, the antipodal map sends the func-
tion f to the function − f .

Thus, we can compute the symmetry descriptors SDk( f , p) if
we address the even and odd frequencies of f independently.
In particular, we express f as the sum of its even and odd
components, f = f + + f−, with:

f +(p) =
f (p)+ f (−p)

2
f−(p) =

f (p)− f (−p)

2
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Then, instead of computing the autocorrelation of f , we
compute the autocorrelation of the even and odd parts in-
dependently to get:

Φ+
f (γ) = 〈 f +,γ( f +)〉 Φ−

f (γ) = 〈 f−,γ( f−)〉

This provides a general expression for the value of
∥

∥

∥
πGk

p
( f )
∥

∥

∥

2
for all k 6= 0 and all axes p as:

1
|2k|

(

|2k|

∑
j=1

Φ+
f (r2 jπ/k

p )+(Sgn(k)) jΦ−
f (r2 jπ/k

p ).

)

Note that to compute the measure of axial symmetry
‖πG∞

p
( f )‖, it suffices to compute ‖πGk

p
( f )‖ with k equal to

twice the band width of the function.

Complexity: For both spherical functions and 3D func-
tions the complexity of computing the autocorrelation over
all rotations is bounded by O(b4). Since computing the k-th
symmetry descriptor requires O(k) summations for each of
O(b2) points on the sphere the overall complexity of com-
puting the O(b) symmetry descriptors is O(b4).

5. Symmetry and Model Similarity

Work in symmetry detection has been motivated, in part, by
the recognition that symmetry is a property characterizing
global shape information so that storing a small amount of
symmetry information for each model should provide an ef-
ficient bound for the similarity of two models. In this section,
we formalize this intuition by explicitly describing how the
difference in the symmetries of two models relates to their
measure of similarity.

5.1. Globality

A fundamental property of the symmetry descriptors is that
they characterize global properties of a model, and hence if
the symmetry descriptors of two models differ at even one
point, we expect this to imply that the models must be dif-
ferent. This property can be formulated explicitly by stat-
ing that the L∞-difference between symmetry descriptors
bounds the L2-difference of the models:

max
k

∥

∥

∥
SDk( f , p)−SDk(g, p)

∥

∥

∥

∞
≤
∥

∥

∥
f −g

∥

∥

∥

2
.

The explicit proof of this bound derives from the fact that the
values of the symmetry descriptors of a function are equal to
the lengths of its projections onto two orthogonal subspaces.
Hence, for any k-fold symmetry, and any axis p we have:
∥

∥

∥
f −g

∥

∥

∥

2
=
∥

∥

∥
πGk

p
( f )−πGk

p
(g)
∥

∥

∥

2
+
∥

∥

∥
π⊥

Gk
p
( f )−π⊥

Gk
p
(g)
∥

∥

∥

2

≥
(∥

∥

∥
πGk

p
( f )
∥

∥

∥
−
∥

∥

∥
πGk

p
(g)
∥

∥

∥

)2
+

+
(∥

∥

∥
π⊥

Gk
p
( f )
∥

∥

∥
−
∥

∥

∥
π⊥

Gk
p
(g)
∥

∥

∥

)2

=
∥

∥

∥
SDk( f , p)−SDk(g, p)

∥

∥

∥

2

so that the difference between the symmetry descriptors of
two models, at any point and any type of symmetry, is an
explicit bound for the proximity of the two models.

5.2. Continuous Symmetry Classification

One of the challenges of shape retrieval stems from the fact
that often 3D models are not a priori aligned, and many
methods for comparing two models require an initial step
of pair-wise registration. For these types of applications, the
globality property mentioned above cannot be utilized with-
out first aligning the models. In this section we show how
symmetry information can be used for comparing two mod-
els without requiring the initial alignment step.

We are motivated in our approach by early work in sym-
metry detection [Ata85, Wol85, Hig86] where the goal was
to classify models in terms of the types of symmetry that
they have. These methods sought to assign a binary value to
each integer k, indicating whether or not a model had k-fold
symmetry. Since such a representation did not specify the
axis of symmetry, it was inherently rotation invariant.

Using the symmetry descriptors, we extend these binary
classifications into a continuous framework where for each
k, we store the optimal measure of k-fold symmetry, even
when the model is not k-fold symmetric. In particular, setting
sk( f ) to be the maximal value of k-fold symmetry of f :

sk( f ) = max
p∈S2

∥

∥

∥
πGk

p
( f )
∥

∥

∥

we define the optimal k-fold symmetry of f as the pair:

Symk( f ) =

(

sk( f ),
√

‖ f‖2 − sk( f )2
)

giving a continuous, rotation invariant classification of a
model in terms of its symmetries. Furthermore, as a direct
corollary of the globality property, it follows that the sym-
metry classification can be used to bound the proximity of
two models:

max
k

∥

∥

∥
Symk( f )−Symk(g)

∥

∥

∥
≤
∥

∥

∥
f −g

∥

∥

∥
.

Thus, symmetry classifications can be used to match models
without requiring an initial step of pair-wise registration.

6. Symmetry Augmentation

Motivated by the property described in Section 5, we would
like to use the continuous symmetry classification for effi-
ciently comparing models in a rotation invariant manner. In
particular, we would like to augment existing shape descrip-
tors with symmetry information, but would like to do so in
a manner that is not redundant. To this end, we consider the
Spherical Harmonic Representation described in [Kaz03].

The Spherical Harmonic Representation is a general
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method for obtaining a rotation invariant representation of
spherical (and 3D) shape descriptors that describes the de-
scriptors in terms of the distribution of energies across dif-
ferent frequencies (and radii). Specifically, given a spherical
function f , the Spherical Harmonic Representation decom-
poses the function in terms of its frequency components fl :

f =
b

∑
l=0

fl , with fl = ∑
|m|≤l

al,mY m
l

where al,m are the coefficients of f with respect to the spheri-
cal harmonic basis Y m

l . A rotation invariant representation of
f is then obtained by storing only the norms of the different
frequency components:

SH( f ) = {‖ f0‖,‖ f1‖, . . . ,‖ fb‖}.

The advantages of this representation are two-fold: First, the
representation is rotation invariant by construction, making
it possible to compare models without first aligning them.
Second, in going from a spherical function to its Spherical
Harmonic Representation, the dimensionality of the repre-
sentation is reduced, contracting a 2D spherical function to
a 1D array of energy values.

However, it has been noted that the Spherical Harmonic
Representation treats each frequency component indepen-
dently and does not capture information characterizing the
alignment between different frequency components. Sym-
metry, by contrast, depends strongly on the manner in which
the different frequencies align, and therefore captures infor-
mation that is missing in the Spherical Harmonic Represen-
tation. Thus, augmenting the Spherical Harmonic Represen-
tation with symmetry information should provide a more
discriminating representation, combining the local (in fre-
quency space) information of the Spherical Harmonic Rep-
resentation with global symmetry information.

Figure 2 demonstrates the motivation for this approach.
In this figure, a database is queried with the near-axially
symmetric table on the left, and retrieval results are shown
without (top) and with (bottom) symmetry augmentation.
Note that the addition of symmetry induces a preference for
models that are near-axially symmetric, and pushes away
models (such as the square table, second model in the non-
augmented results) that do not have such a symmetry.

In order to augment the Spherical Harmonic Represen-
tation we make the assumption that symmetry is uniformly
distributed across all the non-constant frequencies (constant
frequency components are fully symmetric), so that if f is a
shape descriptor and Symk( f ) is the measure of the k-fold
symmetry of f then:

Symk( fl) ≈ Symk( f ) · ‖ fl‖
‖ f‖

where fl is the l-th frequency component of f . Thus, we re-
place the original Spherical Harmonic Representation (SH)

Figure 2: An example of the improvement gained by augmenting
the energy representation with symmetry information. The database
was queried with the near axially-symmetric table on the left and re-
sults are shown for retrieval without (top) and with (bottom) symme-
try augmentation (considering, axial, 2-fold, 3-fold, and reflective
symmetries). Note that symmetry augmentation improves matching
performance by introducing a preference for models which have
near axial symmetry.

with the symmetry augmented representations:

SHk( f ) =

{

‖ f0‖,Symk( f ) · ‖ f1‖
‖ f‖ , . . . ,Symk( f ) · ‖ fb‖

‖ f‖

}

.

Then, to compare two descriptors, we find the symmetry
type for which the two models vary most, and compare the
corresponding symmetry augmented representations:

D( f ,g) = max
k

‖SHk( f )−SHk(g)‖.

Figure 3 demonstrates the process of symmetry augmen-
tation. Given a spherical shape descriptor (shown in the top
left), its Spherical Harmonic Representation is computed by
expressing the spherical function in terms of its frequency
components, { f0, f1, . . .}, and storing the norm of each com-
ponent (shown in the top right). The symmetry descriptors
are computed, and the continuous, k-fold symmetry of f is
extracted (shown in the bottom left). Finally, the Spherical
Harmonic Representation is augmented with symmetry in-
formation by scaling with the k-fold symmetry of f , to ob-
tain a finer resolution of non-constant frequency information
(shown in bottom right).

6.1. Comparing the Symmetry Augmented Descriptor

Despite the fact that the symmetry augmented representa-
tion now requires a copy of the Spherical Harmonic Rep-
resentation for each symmetry type, in theory encumbering
both storage and comparison, the symmetry augmented rep-
resentation is in fact compact and compares efficiently. In
particular, if we compute the symmetry dot product:

SDot( f ,g) = max
k

〈

Symk( f )
‖ f‖ ,

Symk(g)

‖g‖

〉

c© The Eurographics Association 2004.



M. Kazhdan T. Funkhouser & S. Rusinkiewicz / Symmetry Descriptors

Figure 3: The augmented Spherical Harmonic Representation of
a 3D shape descriptor (top left) is obtained by first computing the
Spherical Harmonic Representation (top right) and the k-fold sym-
metries of f (bottom left). The k-fold symmetries are then used to
provide a finer resolution of non-constant frequency information by
multiplying each frequency norm by the pair of k-fold symmetry val-
ues (bottom right).

and the frequency dot product:

FDot( f ,g) =
b

∑
l=1

‖ fl‖‖gl‖

independently, we can separate the role of symmetry infor-
mation from frequency information in the measure of shape
similarity:

D2( f ,g) = ‖ f‖2 +‖g‖2

−2‖ f0‖‖g0‖−2SDot( f ,g) ·FDot( f ,g).

Thus, in comparing two descriptors, the symmetry infor-
mation is separated from frequency information and only a
single copy of the Spherical Harmonic Representation needs
to be stored. Furthermore, the separation of symmetry infor-
mation from frequency information allows for efficient com-
parison of two models, since the computations of SDot( f ,g)
and FDot( f ,g) are both efficient computations that can be
performed independently, and then combined to give the
measure of similarity.

Finally, the separation of symmetry information from fre-
quency information provides an easy method for modulating

the importance of symmetry in the measure of model simi-
larity. In particular, we can define the family of metrics:

D2
α( f ,g) = ‖ f‖2 +‖g‖2

−2‖ f0‖‖g0‖−2SDotα( f ,g) ·FDot( f ,g).

indexed by the parameter α. When α = 0 symmetry plays
no role in shape comparison and we revert to the Spherical
Harmonic Representation. When α = 1 we obtain the sym-
metry augmented representation described above. And more
generally, as α is increased, symmetry plays a more defining
role in evaluation of shape similarity.

7. Experimental Results

To measure the efficacy of the symmetry augmented Spher-
ical Harmonic Representation in tasks of shape retrieval, we
computed a number of spherical shape descriptors, and com-
pared matching results when the Spherical Harmonic Repre-
sentation was used with the results obtained when the Spher-
ical Harmonic Representation was augmented with symme-
try information. The descriptors we used in our experiments
were:

• Spherical Extent Function[Vra1]: A description of a
surface associating to each ray from the origin, the value
equal to the distance to the last point of intersection of the
model with the ray. (If the intersection is empty then the
associated value is zero.)

• Radialized Spherical Extent Function[Vra03]: A de-
scription of a surface which first decomposes 3D space
into concentric shells and then computes the Spherical Ex-
tent Function of the intersection of the model with each
shell independently. The resulting descriptor represents a
3D model with a collection of spherical functions.

• Shape Histogram (Sectors)[Ank99]: A description of a
surface associating to each ray from the origin, the amount
of surface area that sits over it.

• Shape Histogram (Sectors and Shells)[Ank99]: A de-
scription of a surface which first decomposes 3D space
into concentric shells and then computes the Sector repre-
sentation of the intersection of the model with each shell
independently. The resulting descriptor represents a 3D
model with a collection of spherical functions.

• Voxel: A description of a model as a voxel grid, which
is obtained by rasterizing the boundary of the model. The
voxel grid is represented as a collection of spherical func-
tions by restricting the grid to concentric spheres and scal-
ing by

√
4π · r2 to account for the change of area.

• Gaussian Euclidean Distance Transform[Fun03]: A de-
scription of a shape as a voxel grid, where the value at
each point is given by the composition of a Gaussian with
the Euclidean Distance Transform of the surface. Similar
to the Voxel representation, the grid is represented by a
collection of spherical functions.

We evaluated the performance of each method by measur-
ing how well they classified models within a test database.
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Figure 4: The improvement in the precision of both the original and augmented Spherical Harmonic Representation over PCA-alignment are
shown. Note that symmetry augmentation always improves the matching performance and out-performs the PCA-aligned representation.

The database consisted of 1890 “household" objects pro-
vided by Viewpoint [Vie01]. The objects were clustered into
85 classes, based on functional similarity, largely following
the groupings provided by Viewpoint and classes ranged in
size from 5 models to 153 models, with 610 models that
did not fit into any meaningful classes [Fun03]. Classifica-
tion performance was measured using precision/recall plots,
which give the percentage of retrieved information that is
relevant as a function of the percentage of relevant informa-
tion retrieved. That is, for each target model in class C and
any number K of top matches, “recall” represents the ratio of
models in class C returned within the top K matches, while
“precision” indicates the ratio of the top K matches that are
in class C. Thus, plots that appear shifted up generally indi-
cate superior retrieval results.

The results of the Precision vs. Recall experiments are
shown in Figure 4, where the Spherical Harmonic Represen-
tation is augmented with k-fold symmetry information, with
k = −2,2,3,4,5,∞ corresponding to reflective, 2-fold, 3-
fold, 4-fold, 5-fold and axial symmetry information. A value
of α = 2 was used to amplify the importance of symme-
try in retrieval – this was empirically determined to give the
best results. The plots compare the improvement in precision
over PCA-alignment when models are matched by compar-
ing the (rotation invariant) Spherical Harmonic Representa-
tions of the descriptors and models are matched by com-
paring the symmetry augmented Spherical Harmonic Rep-
resentations of the descriptors, (so that PCA-aligned models
would give a constant base-line of 0% improvement.) Note
that for all of the descriptors, the symmetry augmented rep-
resentation provides better matching performance, improv-

ing on the retrieval performance of the original Spherical
Harmonic Representation.

Representation Spherical Voxel

Size (floats) 256 8192
PCA Compute (sec) 0.01 0.09

Compare (ms) 0.18 5.89

Size (floats) 16 512
Harmonic Compute (sec) 0.01 0.09

Compare (ms) 0.02 0.31

Size (floats) 28 524
Symmetry Compute (sec) 0.59 0.72

Compare (ms) 0.02 0.32

Table 1: A table of the sizes and compute and compare times of the
spherical and voxel shape descriptors using PCA-alignment, Spher-
ical Harmonic Representations, and symmetry augmentation.

Of particular importance is the fact that augmented rep-
resentation always outperforms the PCA-aligned descrip-
tors (the improved precision plot is always bigger than
zero). For a number of descriptors we find that at low re-
call values the Spherical Harmonic Representation suffers
from the information loss inherent in the representation and
performs worse than PCA-aligned descriptors. By contrast,
the augmented representation always does better than PCA-
alignment, despite the fact that the augmented Spherical
Harmonic Representation is much smaller than the PCA-
aligned representation. The space and time complexity of
the different representations are compared in Table 1 which
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gives the size and computation time for spherical and voxel
based descriptors (voxels are sampled at 32 concentric shells
about the origin and every spherical function is represented
by its first 16 frequency components). Thus, the augmented
representation provides better matching performance with
less information, making it particularly well suited for re-
trieval tasks where compactness, efficiency, and discrimina-
tion are imperative.

8. Conclusion

In this paper, we have explored the manner in which sym-
metry can be used to assist in the tasks of shape matching
and shape retrieval. To this end we have introduced the sym-
metry descriptors of a model – a collection of functions giv-
ing the measures of k-fold symmetry with respect to all axes
passing through a model’s center of mass – and have shown
how to compute the descriptors efficiently. Using the fact
that the symmetry descriptors capture global information,
we have shown how the local Spherical Harmonic Repre-
sentation can be augmented with symmetry information to
provide a more discriminating representation for many ex-
isting shape descriptors. As a result, we provide a method
for obtaining a compact, rotation invariant, representation of
shape descriptors that allows for efficient matching of 3D
models without requiring a priori model registration.
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